The use of meta-analysis to improve decision-making from first-in-patient trials in psoriasis

Michael G. Dodds, Ph.D.

3rd Annual Pacific Coast Statisticians and Pharmacometricians Innovation Conference (PaSiPhIC)

June 25 - June 27, 2012 - Cal Poly, San Luis Obispo, CA

http://www.pasiphic.calpoly.edu/
How can meta-analysis help facilitate early clinical development?

• Q: *how do we design small, Phase 1 trials to facilitate decision-making?*

• We want to know:
 • Do we proceed to Phase 2?
 • How should we proceed in Phase 2?

• Model-based meta-analysis (MBMA) part of the toolkit to probe the fitness of trial designs to answer these questions.
 • i.e. “is this trial design adequate for our purpose?”
Motivating example

• What’s the drug?
 • Fully human monoclonal antibody, binds soluble target (linear pharmacokinetics)
 • Seeking indication for the treatment of psoriasis

• What do we know?
 • Volunteer studies established multiple, high doses in volunteers (700 mg IV) safe and well-tolerated (no safety issue)
 • Drug under consideration has no biomarker or clinical response in healthy volunteers (no efficacy or surrogate information)

• What do we do now?
 • Establish proof-of-concept in patient population

• How do we do this?
 • Test highest dose vs placebo in patient population
Tools to provide answers to these questions

Model-based meta-analysis
- Model for expected trial outcomes
- Benchmarking information

Clinical Trial Simulation
- ‘What-if’ framework for candidate drug

Back-Estimation
- Trial design quality by
 - ability to address questions
 - risk of being misled
Model-based meta-analysis database

- Characterize the dose-response relationship for mean PASI change, PASI50/75/90 for all treatment options in patients with PsA and Psoriasis.

- Database
 - Data from 301 treatment arms in 94 trials, representing 38,460 patients
 - 13 drugs, 3 of which are like our drug under consideration: adalimumab, golimumab, ustekinumab
 - Trials: Active RA (59), recent onset RA (8), Psoriatic RA (8), Psoriasis (19)

- Allows us to understand if differences in potency exist across treatments, etc.
Model-based meta-analysis model structure

\[\text{logit}(P(\text{event})_{ijk}) = E_{0i} + \frac{E_{\text{max}} \cdot \text{Dose}}{\text{Dose} + ED_{50}} + \eta_{i,k} \]

The number of events, \(n_{ijk} \), is assumed to be multinomially distributed with parameters \(P(\text{event})_{ijk} \) and \(N_{ij} \).

- \(P(\text{event})_{ijk} \) represents the probability of a patient having an event for the \(k^{\text{th}} \) endpoint in the \(j^{\text{th}} \) treatment arm of the \(i^{\text{th}} \) trial.
 - The number of events are assumed to be multinomially distributed.
 - The correlation between repeated observations (multiple endpoints) for a specific group of patients (treatment arm) within a trial is estimated.
- \(E_{0i} \) is the response to background treatment (placebo) in the \(i^{\text{th}} \) trial.
 - A different background treatment response is estimated for every trial.
- \(E_{\text{max}} \) is the maximal drug effect, reflecting the maximal difference in response between placebo and active treatment.
- \(\text{Dose} \) is the total daily/weekly/monthly dose.
 - Different regimens are corrected for total daily/weekly/monthly dose.
- \(ED_{50} \) is the dose to achieve 50% of \(E_{\text{max}} \).
- \(\eta_{i,k} \) is a trial specific random effect with mean 0 and variance \(\omega_{k}^{2} \).

Mandema 2011, CPT
Results of the model-based meta-analysis for psoriasis

PASI Response

Dose ED

Dose EE PASI

\[\text{PASI Response} = \frac{E_{\text{max}} \cdot \text{Dose}}{ED_{50} + \text{Dose}} \]

fully human mAbs with linear PK
i.e. like our drug under consideration

<table>
<thead>
<tr>
<th>Compound</th>
<th>PASI (E_{\text{max}}) (%)</th>
<th>ED50 (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>adalimumab</td>
<td>84.2%</td>
<td>16.9</td>
</tr>
<tr>
<td>golimumab</td>
<td>84.2%</td>
<td>45.5</td>
</tr>
<tr>
<td>ustekinumab</td>
<td>84.2%</td>
<td>13.9</td>
</tr>
</tbody>
</table>

\(E_0 = 9.98\% \) for all compounds

Dodds, ASCPT meeting 2011
Tools to provide answers to these questions

- Model-based meta-analysis
 - Model for expected trial outcomes
 - Benchmarking information

- Clinical Trial Simulation
 - ‘What-if’ framework for candidate drug

- Back-Estimation
 - Trial design quality by ability to address questions • risk of being misled

\[
PASI\% = E_0 + \frac{E_{max} \cdot Dose}{ED_{50} + Dose}
\]

<table>
<thead>
<tr>
<th>Compound</th>
<th>PASI E_{max} (%)</th>
<th>ED50 (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>adalimumab</td>
<td>84.2%</td>
<td>16.9</td>
</tr>
<tr>
<td>golimumab</td>
<td>84.2%</td>
<td>45.5</td>
</tr>
<tr>
<td>ustekinumab</td>
<td>84.2%</td>
<td>13.9</td>
</tr>
</tbody>
</table>
Define successful trial qualities

• A successful trial gives a clear and correct evaluation of maximum drug potency relative to placebo
 • Marketed cases: $E_{\text{max}} - E_0 = 84.2\% - 9.98\% = 74.2\%$
 • The “go / no-go” (G/NG) criteria:
 • maximal drug effect over placebo $(E_{\text{max}} - E_0) > 50\%$.
 • Set a reasonable bar for progression, with the understanding that small trials can be misleading

• A successful trial gives an accurate understanding of the drug’s dose-response relationship, informing dose levels to be tested in future Phase 2 dose-ranging study
 • Adequate dose-response information was defined as an ED_{50} estimate within 2-fold of true
 • Unlikely to select arms in a subsequent Phase 2 that are too high or low
 • Set a reasonable bar, with the understanding that subsequent Phase 2 will refine this estimate.
Clinical trial simulation drug test cases

<table>
<thead>
<tr>
<th>Compound</th>
<th>Simulation Parameters</th>
<th>Desired Trial Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Simulation Parameters</td>
<td>Desired Trial Outcome</td>
</tr>
<tr>
<td></td>
<td>PASI</td>
<td>ED50</td>
</tr>
<tr>
<td></td>
<td>Emax (%)</td>
<td>(mg)</td>
</tr>
<tr>
<td>adalimumab</td>
<td>84.2%</td>
<td>16.9</td>
</tr>
<tr>
<td>golimumab</td>
<td>84.2%</td>
<td>45.5</td>
</tr>
<tr>
<td>ustekinumab</td>
<td>84.2%</td>
<td>13.9</td>
</tr>
<tr>
<td>discontinumab</td>
<td>23.1%</td>
<td>11.8</td>
</tr>
<tr>
<td>mehmimab</td>
<td>45.0%</td>
<td>32.1</td>
</tr>
</tbody>
</table>

E0 = 9.98% for all compounds; N=1000 simulated trials; N=16 subjects for each trial; Intersubject variability for E_max (maximum drug effect), E0 (placebo effect) and ED50 (dose of ½ E_max) were 71, 71 and 100%.

Marketed monoclonal antibody test cases and (similar) hypothetical test case in the psoriasis space examined.
Tools to provide answers to these questions

- Model-based meta-analysis
 - Model for expected trial outcomes
 - Benchmarking information

- Clinical Trial Simulation
 - ‘What-if’ framework for candidate drug

- Back-Estimation
 - Trial design quality by
 - ability to address questions
 - risk of being misled

\[
PASI_{\%} = E_0 + \frac{E_{\text{max}} \cdot \text{Dose}}{ED_{50} + \text{Dose}}
\]

<table>
<thead>
<tr>
<th>Compound</th>
<th>PASI E_{max} (%)</th>
<th>ED50 (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>adalimumab</td>
<td>84.2%</td>
<td>16.9</td>
</tr>
<tr>
<td>golimumab</td>
<td>84.2%</td>
<td>45.5</td>
</tr>
<tr>
<td>ustekinumab</td>
<td>84.2%</td>
<td>13.9</td>
</tr>
</tbody>
</table>
Clinical trial simulation trial design test cases

Know:
- Placebo response
 - \((E_0) = ~10\%\)
- Standard-of-care maximal response
 - \((E_{\text{max}}) = ~85\%\)
- Half-maximally efficacious dose
 - \((ED_{50}) = [10, 100] \text{ mg}\)
- N=16 patients
- Patients allocated to
 - “Concentrated” design:
 - placebo (N=4)
 - 700 mg (N=12)
 - “Distributed” design:
 - placebo (N=4)
 - 21 mg (N=3)
 - 70 mg (N=3)
 - 210 mg (N=3)
 - 700 mg (N=3)

Learn:
- the portfolio value of our candidate drug (i.e. *does our candidate have a worse, same or better* \(E_{\text{max}}\)?)
- our dose-response profile to help us design an efficient Phase 2 (i.e. *what is our candidate’s* \(ED_{50}\)?)
Clinical trial simulation and back-estimation

• Stochastic simulation and estimation

• Simulation
 • Individual PASI% responses simulated 1000 times for:
 • True drug parameters and variability (5 drugs)
 • Dose level allocation (2 designs) for 16 subjects

• Estimation
 • Concentrated designs:
 • Placebo patients: \(PASI\% = E_0 \)
 • High dose patients: \(PASI\% = E_0 + E_{\text{max}} \)
 • Distributed designs:
 • All patients: \(PASI\% = E_0 + \frac{E_{\text{max}} \cdot \text{Dose}}{ED_{50} + \text{Dose}} \)
Design performance for Go/No-Go decision-making

Only a minor (0-10%) advantage with Concentrated designs
Design performance for dose-selection decision-making

- Adalimumab
- Golimumab
- Ustekinumab
- Discontinumab
- Mehmimab

Good dose-response information available from Distributed design
Tools to provide answers to these questions

Model-based meta-analysis
- Model for expected trial outcomes
- Benchmarking information

Clinical Trial Simulation
- ‘What-if’ framework for candidate drug

Back-Estimation
- Trial design quality by
 - ability to address questions
 - risk of being misled

\[\text{PASI}\% = E_0 + \frac{E_{\text{max}} \cdot \text{Dose}}{ED_{50} + \text{Dose}} \]

<table>
<thead>
<tr>
<th>Compound</th>
<th>PASI E_{max} (%)</th>
<th>ED50 (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>adalimumab</td>
<td>84.2%</td>
<td>16.9</td>
</tr>
<tr>
<td>golimumab</td>
<td>84.2%</td>
<td>45.5</td>
</tr>
<tr>
<td>ustekinumab</td>
<td>84.2%</td>
<td>13.9</td>
</tr>
</tbody>
</table>
Summary in the larger context of drug development

- Approach can be applied to programs where more meaningful development decisions from Phase 1 are desired

- A number of tools are at our disposal:
 - Model-based meta-analysis: benchmarking / context
 - Clinical trial simulations: “what-if”
 - Back-estimation: design quality

Distributed designs trade minor (0-10%) Go/No-Go performance to gain valuable dose-response information needed to guide Phase 2 design

Other studies may conclude differently… make it quantitative!
Acknowledgements

- David Salinger
- John Gibbs
- Jaap Mandema
- Megan Gibbs