Novel PK/PD Model Design and Therapeutic Translation for Targeted Agents in Oncology

Gary L. Rosner

Oncology Biostatistics and Bioinformatics
The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins

PaSiPhIC 14 July 2011 San Luis Obispo, California
Outline

• Do we need new designs for targeted agents?
 ▸ Why not continue using earlier designs?

• What do we need to measure?
 ▸ What is wrong with past methods?

• What are some proposals?

• Where are we now?
Molecular Targets

• How do cancer cells work?
• ⇒ Identify targets
 ‣ Initiation,
 ‣ Angiogenesis
 ‣ Metastasis

• How best measure PD effect?
 ‣ Radiographically? Biopsies?
Issues

• Newer anticancer agents target molecular pathways or genetic mutations
 - Trastuzumab (Her-2 pos. breast cancer)
 - Tarceva (EGFR inhibitor)
 ‣ Sometimes not as specific
 - Sorafenib
 ‣ Originally Raf-1 inhibitor but found active against B-Raf, VEGF-R1, PDGFR, FLT-3
PD And Clinical Utility

• Assay development is critical
 ‣ Define target pop’n & trt effect
 ‣ Must be
 - Reproducible & meaningful
• PD effect on target ≠ clinical benefit
 ‣ Ultimately need to show clinical benefit
Measures of Clinical Benefit

• Two common measures of efficacy/activity
 ▸ Phase II: tumor response (shrinkage)
 - RECIST
 ▸ Phase III: overall, disease-free, or progression-free survival

• Some targeted agents show survival & clinical benefit despite modest response in phase II

Suggests need for new designs/endpoints
Problems W/ Usual Endpoints

• Measurements often difficult
• Response (progression) criteria not uniform
 ‣ WHO vs RECIST 1.0 vs RECIST 1.1
• Anatomic change may not reflect response
 ‣ What is measurable?
• Pseudoresponse and pseudoproggression exist
Tumor Immunotherapy

- Immunotherapy may cause apparent increase
 - Invading lymphocytes - PD by RECIST

- PD by RECIST

\[\text{Immune Response Criteria for Tumor Immunotherapy?}\]
Patterns of Response to Ipilimumab Observed in Advanced Melanoma

©2009 by American Association for Cancer Research
Pseudoprogression

Increased enhancement following surgery, radiation

Pseudoresponse

CT & MRI: reduced permeability to contrast, not tumor response

1 day after cediranib (pan-VEGFR inhibitor)

Dependence on Modality

Dependence on Modality (2)

FLAIR image at baseline

PD: FLAIR image after 7 mos Avastin

Modality-Specific Response Criteria

- **FDG-PET to assess response** (tumor metabolism)

- **Criteria for evaluating antitumor responses with immunotherapeutic agents**

- **Response criteria for high-grade gliomas**

- PERSIST

- Immune-Related Response Criteria (ir-RC)

- RANO Working Group Criteria
Biomarker-Based Designs

• Goal: Find which treatment works for which pts
 ‣ Discovery or validation?
 - Retrospective: Lack of comparability
 ‣ Supportive care differences
 ‣ Assay differences over time
 ‣ Randomization: ensures comparable grps
 - May not be feasible
Retrospective Validation

- Evaluate marker-by-trt interaction
 - Retrospective analysis of completed RCT
- Retrospective study OK if
 - Prospective RCT not possible for ethical or other reasons
 - Prospective RCT not feasible
 - e.g., large sample size or long follow-up

Simon et al JNCI 2009
Needs of Retrospective Study

- Available on all or most pts
- Prospective statement of
 - hypotheses,
 - analysis plan,
 - inclusion/exclusion,
 - algorithms for assay scoring
Prospective Validation

• Designs
 ▸ All-comers or unselected designs
 ▸ Hybrid designs
 ▸ Enrichment designs
 ▸ Adaptive randomization designs
All-Comer (Unselected) Design

- Stratify by marker status, randomize separately
- Within-group sample size & power
 - Trt-by-marker interaction

```
Marker
  +
  Rand
  |
  Rand
  |
  Trt A

  -
  Rand
  |
  Rand
  |
  Trt B
```

Trt A
Trt B
Hybrid Designs

• Randomize marker-positive subgroup
 ▸ Marker neg group gets standard of care
• Collect outcome and specimens for all pts
• Useful if
 ▸ Prior evidence is strong for subgroup efficacy
 ▸ Unethical to randomize pts with marker to other trts
Enrichment Designs

• Screen pts for presence or absence of marker
• Only include pts with (or without) marker
• Want to assess clinical benefit in subgroup defined by marker
• Not controversial if
 ▸ Drug’s mechanism of action is known
 ▸ Reliable & reproducible assay
 ▸ Strong preliminary data
Enrichment Designs

• Enrichment designs
 ‣ Fewer randomized pts but may need to screen more than regular RCT
 ‣ Need real-time marker assessment
 ‣ Assumes marker tells all of who benefits

• Learn which subpop’n to target
 ‣ Who may benefit?
 ‣ Who might not benefit?
Why Different Designs?

• Traditional designs based on tumor shrinkage
 ‣ Response versus non-response
 ‣ Highest dose assumed best
 - Efficacy vs. toxicity

• Targeted agents may not shrink tumors
 ‣ May stall or slow growth
 ‣ Stable disease may be goal
Principal Objective of Phase II

• Determine if a drug has sufficient activity to warrant further investigation

 ‣ Not clinical efficacy analysis
 - Clinical Efficacy \(\rightarrow\) Activity
 - Activity \(\leftrightarrow\) Clinical Efficacy

 ‣ Not estimating size of trt effect in larger pop’n
 - Explanatory vs. pragmatic
End Points Proposed in Literature

• Multinomial (incl progression and response)

• Progression-free survival & time to progression

• Biomarker-based
 McShane LM, Hunsberger S, Adjei AA. *Clin Cancer Res* 15:1898-1905, 2009

• Tumor size as continuous variable
Example of Enrichment Design

• Challenge for phase II studies of putative cytostatic agents

• Randomized discontinuation design
 ‣ What is it?
 ‣ Is it good? bad?

Randomized Discontinuation Design

- **Two-phases**
 - Open treatment phase
 - Find best dose, remove noncompliers, etc.
 - Randomize pts with SD in our version
 - Those who tolerate drug or
 - Those whose disease may be slowing
 - Double-blind RCT
Randomized Discontinuation Design

Open label

Response?
Tolerate?
Adhere?

Continue if CR/PR

Y

Continue therapy

Placebo*

* Switch back to therapy if PD

Out

T1

T2
Optimal RDD

- Apply decision theory to help choose design
 - Length of open-label phase
 - Length of follow-up after randomization
 - Number of patients to enroll
 - Function of number enrolled, durations of two phases, difference to detect, etc.

Trippa, Rosner, & Müller (to appear) Biometrics
Tumor Growth Model

• Gompertzian tumor growth

\[\frac{dX_t}{dt} = a \cdot X_t - b \cdot X_t \cdot \log(X_t), \quad X_0 = x_0 \]

• Stochastic differential equation

 ‣ Allow for between-patient heterogeneity
 ‣ Allow for deviation from expected trajectory

\[dX_{it} = \{ a_i \cdot X_{it} - b_i \cdot X_{it} \cdot \log(X_{it}) \} dt + \sigma_i X_{it} dW_{it} \]

\[X_{i0} = x_{i0}, \quad t \in [0, T] \]
Steps to Proposed Construction

• Generate future pts’ tumor growth curves via model-based interpolation of historical data
 ‣ Gompertz diffusion process defined earlier
 - 3 parameters
 ‣ Interpolation makes it robust against possible deviations from model assumptions
 ‣ Construction easily interpreted & implemented
 ‣ Add treatment effect parameter
Using Historical Information for Prior

• Elicitation of expert opinion on tumor growth process across heterogeneous pop’n difficult

• Expert judgement about the three pivotal probabilities is available
 ‣ $p_e = \text{prob pt is eligible for randomization}$
 ‣ p_0 & $p_1 = \text{prob response for trt 0 & trt 1, resp.}$

• We only need elicitation for trt effect ψ_i
 ‣ ψ_i is a function of 3 model parameters
Prior Elicitation & Specification

Figure 3.

Panel (i): The upper trajectory shows observed historical tumor growth data \(t_i \) under the control regimen. The lower trajectory shows imputed measurements and trajectory under the treatment regimen.

Panels (ii) and (iii): Median trajectories, 80% & 50% confidence bands of \(X_{1i,t} \sim \text{GP}(\tilde{\alpha}_j - \tilde{\psi}_j \tilde{\beta}_j, \tilde{\beta}_j, \tilde{\sigma}_j | X_{1i,t}^0, \ldots, X_{1i,t}^k = \tilde{X}_{1j,t}^0, \ldots, \tilde{X}_{1j,t}^k) \) under two alternative prior distributions for \(\{\tilde{\psi}_j\}_{M_j=1} \).

Upper: Obs historical tumor growth data (cntl)

Lower: Imputed meas & trajectory (new trt)

Median trajectories, 80% & 50% confidence band under two alternative priors for trt effect \(\psi_i \).
Formulate as Decision Problem

• Have dist’n of data (tumor growth)
• Have dist’n of model parameters
• Action space: alternative designs
 ‣ Total no. of pts enrolled: N
 ‣ Duration of open-label phase: T_1
 ‣ Duration of follow-up post-randomization: T_2
Utility Function

• Balance

 ‣ Costs of the study:
 \[C(d, \phi, X) = c_1 N + c_2 n + c_3 (T_1 N + T_2 n) \]

 ‣ Benefits from subsequent phase III trial:
 \[B(d, \theta, Y) = I \{ S_d(Y) \in R_d \} E \{ \log(1 + \psi_{N+1}) \mid \theta \} \]

\[u(d, \theta, Y) = B(d, \theta, Y) - C(d, \theta, Y) \]
Implementation

• Simulate clinical trial for various values of 3 parameters: \((N, T_1, T_2)\)

 ‣ \(n\) is a function of \(T_1\) and dist’n of tumor growth across pop’n
 - Pt continues if SD (tumor within bounds)

• Monte Carlo optimization

 ‣ Approximate expected utility by smoothing simulation results across various \((N, T_1, T_2)\)
Monte Carlo Approximation

Sims yield \((d_h, u_h), h = 1, \ldots, H\) for different \((N, T_1, T_2)\)

\[
u(d, \theta, Y)
\]

\[
T_2
\]

\[
T_1
\]

\[
u(d, \theta, Y)
\]

\[
N^N
\]
Example Solutions

c_1 = c_2 = 0.001, c_3 = 3.3 \times 10^{-5}

d^* = (216, 60, 102)

\[u(d, \theta, Y) \]

\[N = 246 \]

Decision maker favors RDD over 2-arm RCT \(T_1 = 0 \)
and over no study \(N = 0 \)

c_1 = 0.004, c_2 = c_3 = 0

d^* = (204, 62, 108)

\[c_1 = c_2 = 0.002, c_3 = 6.6 \times 10^{-5} \]

d^* = (152, 56, 105)

\[c_1 = 0.004, c_2 = c_3 = 0 \]
Provide Table of Operating Chars

- Use historical information from CALGB 69901
- Costs are $c_1 = c_2 = 0.001, c_3 = 3.3 \times 10^{-5}$
- Action space: $D = \{d = (N, T_1, T_2) \in (0, 1, \ldots, 300)^3\}$
- Expected growth at 4 months:
 - 12% (trt) vs 24% (control)
 - Optimal design: $d^* = (N^* = 221, T_1^* = 72, T_2^* = 145)$
Response Adaptive Examples

BATTLE & BATTLE 2
- Prospective study to identify biomarkers to predict tumor response (NSCLC)
- Predefined targets
- Adaptive rand to 4 trts
- 8-wk disease control
- Enrolled 255 pts in 3 yrs
- “Step toward personalized medicine”

Plenary Session

Innovations in Translational Cancer Medicine

Sunday, April 18, 2010 • 9:30 a.m.-12:15 p.m.

Exhibit Hall D, Washington Convention Center

Chairperson: Frank McCormick, UCSF Comprehensive Cancer Center, San Francisco, CA

LB-1

The BATTLE trial (Biomarker-Integrated Approaches of Targeted Therapy for Lung Cancer Elimination): Personalizing therapy for lung cancer.

Background: Patients (pts) with chemotherapy-resistant non-small cell lung cancer (NSCLC) have few options for effective treatment. BATTLE is a hypothesis-driven prospective study that identifies biomarkers (BMs) to predict tumor response and thus may help select personalized therapy for lung cancer pts.

33%, 244 pts were evaluable for 8 wk DC. All 11 BMs were evaluable in 215 pts. Biopsy sites were lung 55%, liver/adrenal 19%, other 26%. Pneumothorax incidence was 11.5%, and 6.5% of pts had treatment-related grade 3-4 toxicity. *EGFR* status included M in 15%, FISH amplification (A) in 16% and high polysomy in 28%; Other BMs were KRAS M in 20%; VEGF/R2 staining in 40%; RXR alpha nuclear staining in 80%; Cyclin D1 staining in 54%. Overall DCR at 8 weeks was 48%, median overall survival (OS) was 9 months, 1 year survival was 39%, and progression-free survival (PFS) was 1.9 months. Better DCR was seen with *EGFR* M for E (p=0.04); Cyclin D1 IHC positivity (IHC+) (p=0.011) and *EGFR* FISH A (p=0.008) for E + B; VEGF/R2 IHC+ for V (p=0.05); and absence of *EGFR* M (p=0.012) or high polysomy (p=0.048) for S. Pts with both *EGFR* M and FISH A had 100% DC (n=6) with E or EB and 0% DC (n=8) with B. Pts with KRAS M tended to respond better with S.
BATTLE

- **Biomarker-based Approaches of Targeted Therapy for Lung Cancer Elimination**

 - Match pathway with targeted agent
 - 4 pathways & 4 drug regimens
 - Progression-free survival at 8 weeks
 - Adaptive randomization
Response Adaptive Example 2

- I-SPY & I-SPY 2
- Neoadjuvant breast cancer
- Path CR endpoint
- Adaptive rand by group
- Validate MRI markers

“I-SPY 2 will provide a path to personalized medicine,” said Dr. Esserman.
Summary

- Targeted agents may need newer designs with new endpoints
- Endpoint evaluation can be tricky
- Many new designs appearing in literature
 - Randomized discontinuation design feasible
 - Enrichment designs
 - Adaptive designs
Thank You!